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Figure 1. Overview of the proposed ECLAIR dataset. We introduce ECLAIR, a new outdoor large-scale aerial LiDAR dataset. It covers
a total area of more than 10 square kilometers encompassing 11 semantic classes. The long-tail accurate annotations enable fine-grained
semantic understanding. Different semantic classes are labeled by different colors.

Abstract

We introduce ECLAIR (Extended Classification of Lidar
for AI Recognition), a new outdoor large-scale aerial Li-
DAR dataset designed specifically for advancing research
in point cloud semantic segmentation. As the most exten-
sive and diverse collection of its kind to date, the dataset
covers a total area of 10km2 with close to 600 million points
and features eleven distinct object categories. To guarantee
the dataset’s quality and utility, we have thoroughly curated
the point labels through an internal team of experts, en-
suring accuracy and consistency in semantic labeling. The
dataset is engineered to move forward the fields of 3D ur-
ban modeling, scene understanding, and utility infrastruc-
ture management by presenting new challenges and poten-
tial applications. As a benchmark, we report qualitative
and quantitative analysis of a voxel-based point cloud seg-
mentation approach based on the Minkowski Engine. We
release the dataset as open-source and it can be accessed at

*Indicates equal contribution. Correspondence by email: first-
name.lastname@sharpershape.com

https://github.com/SharperShape/eclair-
dataset

1. Introduction

Recent breakthroughs in the field of deep learning [18, 26,
36] are attributed to factors such as the availability of vast
and extensive datasets and have enabled models to gener-
alize effectively across diverse applications. However, such
progress has not been mirrored in the domain of 3D LiDAR.
For instance, the DALES dataset [37], comprising forty
scenes, amounts to a few gigabytes. In contrast, the Com-
monCrawl dataset, one of the largest in Natural Language
Processing (NLP) utilized by the LLaMA model [36], spans
approximately 6 petabytes. Similarly in Computer Vision,
the SegmentAnything[18] dataset occupies 11.3 terabytes
of storage. The inherent nature of 3D datasets, with as-
pects such as the dimensionality and point density, also con-
tributes to this disparity. These characteristics pose unique
challenges for their collection, labeling, and management.
This paper aims to bridge this gap with the aspiration of in-
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creasing the availability of point cloud dataset with a more
extensive and rich dataset comparable in size to DALES,
and facilitate further research into the deep learning models
and their quality.

Outdoor 3D scene understanding is fundamental to many
applications in computer vision, including autonomous
driving, robotics, Augmented and Virtual Reality (AR /
VR) [31, 46]. The last several years, modern machine learn-
ing techniques have advanced state-of-the-art scene under-
standing algorithms for object detection, depth estimation,
semantic and instance segmentation, 3D reconstruction, and
more. Most of these approaches are enabled through a di-
verse set of real and synthetic RGB-(D) datasets [1, 13, 33].

The demand for diverse and accurately annotated
datasets captured at a large scale is becoming more criti-
cal in point cloud semantic segmentation techniques. These
machine learning-based techniques are instrumental across
a multitude of applications ranging from autonomous driv-
ing to urban planning. At present, existing datasets for
point cloud semantic segmentation exhibit a significant in-
clination towards scenarios predominantly related to au-
tonomous vehicles [3, 5, 15, 24, 34] that use Mobile Laser
Scanning (MLS) or Terrestrial Laser Scanning (TLS) sys-
tems to collect the data. While these datasets have ad-
vanced perception systems for self-driving cars, their scope,
largely confined to vehicle-centric perspectives, introduces
a notable gap in the diversity and coverage environments.
This limitation particularly overlooks the potential of aeri-
ally captured data. Other datasets [1, 11, 30, 44] provide
detailed scans of interiors for tasks such as object recog-
nition, semantic segmentation, and novel view synthesis.
While these datasets have been instrumental in advancing
indoor mapping and navigation systems, they are inherently
limited in their applicability to outdoor, large-scale environ-
ments due to their specific focus on indoor spaces.

Airborne LiDAR Scanning (ALS) systems generate
point cloud data that significantly differ from those from
self-driving and indoor datasets. The orientation of ALS
sensors is typically close to a nadir view, leading to dis-
tinct occlusions compared to ground-based scanning sys-
tems. Aerial LiDAR data collection is often more costly
than mobile LiDAR due to expenses associated with aerial
flights [28, 37, 47]. To address the high costs associated
with hardware, [6, 16, 20] propose generating point clouds
from high-quality aerial images captured by a UAV-based
mapping system using photogrammetry. Although cost-
efficient, the quality of the reconstructed point cloud sig-
nificantly depends on the discriminative performance of lo-
cal image descriptors that can struggle to handle different
lighting and weather conditions. The ALS systems pro-
vide advantages such as providing a more uniform density
of point clouds and covering a broader area coverage dur-
ing data collection. Moreover, it enables data collection in

areas where terrestrial travel is challenging. These unique
features make ALS ideal for urban planning and surveying
applications.

The dataset we propose, named ECLAIR (Extended
Classification of Lidar for AI Recognition), consists of a
large-scale point cloud collected from a region in the city
of Espoo, Finland. It covers a contiguous area of more
than 10 square kilometers consisting of more than half a
billion points captured by a long-range high-accuracy Li-
DAR. The focus of the data capture has been to cover the
electrical transmission lines; consequently, the point clouds
follow this network. A comparison of ECLAIR with some
of the existing point cloud datasets is presented in Tab. 1.
In addition to the raw data, we provide accurate ground
truth and pseudo labels, and demonstrate their usability in a
downstream supervised learning task: point cloud semantic
segmentation. In contrast to DALES [37], ECLAIR further
uses high-resolution nadir images to provide colorized point
clouds. We describe the dataset capturing pipeline as well
as the point cloud colorization process in Sec. 3. Along with
color, the dataset also includes intensity, the return number,
and the number of returns as features. Lastly, the proposed
dataset not only shares similarities with existing datasets but
also introduces unique distributions that, when combined
with other datasets, facilitate large-scale generalized repre-
sentational learning [41].

In summary, we make the following contributions: 1)
We introduce ECLAIR, a new outdoor, large-scale aerial Li-
DAR dataset with point-wise semantic annotations; 2) The
proposed dataset enables training and benchmarking point
cloud segmentation approaches on large-scale, real-world
scenes captured by a high-quality aerial LiDAR; 3) We thor-
oughly evaluate one of the existing voxel-based point cloud
semantic segmentation approaches (i.e., the Minkowski En-
gine [10]) on the proposed dataset and discuss quantitative
results.

2. Related Work

Deep learning approaches for 3D semantic understanding
require diverse, large-scale datasets in order to generalize
to new scenes. Here we give a brief introduction to exist-
ing datasets, compare them with ECLAIR, and provide an
overview of current methods for point cloud semantic seg-
mentation.

2.1. Semantic Understanding of 3D Areas

Existing datasets for large-scale point cloud segmentation
can be widely categorized into three groups: indoor scene-
level 3D datasets, outdoor road-level point cloud datasets,
and urban-level aerial LiDAR datasets.
Indoor scene-level 3D datasets. Early datasets in this
category, such as SUN RGB-D [33], NYUv2 [32], and



Dataset Category Year Spatial Size, m / Area, m2 # Classes # Points # RGB Sensor

S3DIS [1]
Indoor scene-level

2017 6 × 103 m2 13 273M ✓ Matterport
ScanNet [11] 2017 1.1 × 105 m2 20 242M ✓ RGB-D
ScanNet++ [44] 2023 1.5 × 104 m2 1000 - ✓ RGB-D

Semantic3D [14]

Outdoor road-level

2017 - 8 4000M ✓ TLS
SemanticKITTI [3] 2019 39.2 × 103 m2 25 4549M ✗ MLS
Toronto-3D [35] 2020 1 × 103 m2 8 78.3M ✓ MLS
SemanticPOSS [24] 2020 - 14 216M ✗ MLS

ISPRS [28]

Aerial urban-level

2012 - 9 1.2M ✗ ALS
DublinCity [47] 2019 2 × 106 m2 13 260M ✗ ALS
Campus3D [20] 2020 1.58 × 106 m2 24 937.1M ✓ P
SensatUrban [16] 2020 7.64 × 106 m2 13 2847M ✓ P
Swiss3DCities [6] 2020 2.7 × 106 m2 5 226M ✓ P
DALES [37] 2020 10 × 106 m2 8 505M ✗ ALS
ECLAIR (ours) 2024 10.3 × 106 m2 11 582M ✓ ALS

Table 1. Comparison of datasets. We compare existing datasets in terms of area of coverage, point density, and the sensor type. While
the coverage area in DALES is similar to ours, the proposed dataset has more semantic classes and additionally provides colorized point
clouds. Similar to [16], we use the following notation: MLS - Mobile Laser Scanning system; TLS - Terrestrial Laser Scanning system;
ALS - Aerial Laser Scanning system; P - photogrammetry.

S3DIS [1], represent RGB-D sequences captured by short-
range depth scanners with low resolution and limited se-
mantic annotations. Other datasets [7, 11, 30] provide an-
notation at scale, but the performance on long-tail classes
is limited by the resolution of ground truth geometry from
laser scans. ARKitScenes [2] and ScanNet++ [44] address
this limitation by incorporating both RGB images and high-
resolution 3D scene geometry captured by lasers. They pro-
vide sparse (bounding boxes) and dense semantic annota-
tions respectively.

Outdoor road-level 3D data. This group of datasets is re-
lated to autonomous driving applications in which the data
is captured by a LiDAR scanner together with RGB cameras
mounted on a vehicle [3, 5, 8, 24, 25, 29, 34, 35]. The mo-
bile LiDAR datasets, with their low-angle perspective and
emphasis on driving-related segmentation tasks, often result
in occlusions inside the point clouds, e.g., missing roofs of
buildings. While these datasets fulfill their primary purpose,
they fall short for use in other domains, such as public utility
asset management and urban planning.

Urban-level aerial datasets. These datasets are pivotal
for advancing research and applications in the fields of re-
mote sensing, environmental monitoring, and autonomous
navigation. They have primarily been obtained by aerial
LiDARs [28, 37, 43, 47] or by using photogrammetry [6,
16, 20]. In contrast to DALES [37], ECLAIR provides col-
orized, large-scale point clouds including high-resolution
3D geometry along with accurate semantic labels and the
number of LiDAR returns for each point.

2.2. 3D Semantic Learning

In general, deep learning based, point cloud semantic seg-
mentation methods fall into three main categories based
on their approach to modeling point clouds: projection-
based, voxel-based, and point-based methods. Projection-
based strategies convert 3D points onto different image
planes, leveraging 2D CNN architectures to extract fea-
tures [9, 19, 21]. Voxel-based methods [10, 23, 39], on
the other hand, turn point clouds into uniform voxel grids,
making 3D convolution operations more manageable and
improving their efficiency with sparse convolution tech-
niques. In contrast, point-based approaches deal with
point clouds directly with a notable recent trend towards
adopting transformer-based architectures [27, 40, 42, 45].
In this work, we thoroughly evaluate one of the voxel-
based approaches, using the Minkowski Engine [10], on the
ECLAIR dataset and identify a number of key challenges
revealed by our dataset.

3. ECLAIR: Dataset Creation

This dataset was created through a multi-step process.
In Sec. 3.1, data capture details the sensors and parameters
employed in acquisition. Subsequent data processing, de-
scribed in Sec. 3.2, involved necessary transformations and
preparation for analysis. Class specifications, crucial for
semantic analysis, are defined in Sec. 3.3. Data curation in-
cluded a manual examination step, outlined in Sec. 3.4. Fi-
nally, data visualization tools were utilized to illustrate the
data and accelerate quality control, as discussed in Sec. 3.5.



3.1. Data Capture

The data presented are captured using our proprietary sen-
sor system built in-house by Sharper Shape and mounted on
a helicopter. It is a single lightweight multi-sensor system,
capable of collecting the data required for utility inspection
and analysis via helicopter. It is equipped with the follow-
ing hardware: a) Long-range, survey grade, high accuracy
LiDAR coupled with highly precise GNSS and FOG IMU
sensors; b) High resolution RGB cameras capturing oblique
and ortho imagery; c) Push broom hyperspectral cameras
providing a broad spectrum of wavelength along the flight
path; and, d) Ambient temperature and humidity sensors.

All sensors were calibrated according to manufacturer
specifications before data processing. The system has the
capability to attach more sensors such as 4-band, ultraviolet
sensors, etc. It has also been tested under various conditions
and has been a reliable system enabling data capture across
multiple projects under Sharper Shape. The data was col-
lected at a flight height of 100 meters and speed of 40 knots.
With 600 PRR (Pulse Repetition Rate) and 234.5 lines per
second, the LiDAR has a point density of 50 points/m2 and
a swath width of 328 meters. The LiDAR was calibrated
using multiple overlap captures with a standard deviation
error of less than 2 cm.

3.2. Data Processing

The data preparation process starts with the utilization of
the RiProcess software to convert raw files into the LAZ
file format. Subsequently, the LAZ files are fed into the
tiling pipeline in which the point clouds are partitioned into
smaller 100 × 100 m tiles. This is facilitated by a tool de-
veloped internally by Sharper Shape to enhance data man-
ageability.

Following tiling, the point clouds undergo a colorization
process. For each tile, relevant images are selected by iden-
tifying areas of overlap. Subsequently, utilizing the cam-
era’s parameters, each point from the point cloud is pro-
jected from 3D onto 2D space. Color information from the
corresponding projected location within the selected image
is then extracted and applied to the point. In instances where
multiple images contribute to a specific point, color averag-
ing is performed across these images. However, this aver-
aging mechanism may introduce inaccuracies, particularly
in the coloring of thin structures such as powerlines. It is
also worth noting that the coverage of images is lower than
that of the point cloud, and hence approximately 20% of the
points lack color information.

Following colorization, the data undergoes point cloud
segmentation utilizing a deep learning model. The em-
ployed proprietary model produces a total of 30 classes with
a predominant focus on classes pertinent to electrical in-
frastructure. These classes are subsequently remapped to a
set of 11 classes that are presented here. This remapping

Figure 2. Point cloud visualization. CORE viewer combines a
view of point clouds colored based on classifications, a map view,
and image view. The point clouds and images also show the vector
data of objects in 3D and 2D, respectively.

yields a notable reduction in classification errors, allowing
the remapped version of the dataset to be effectively utilized
for model training with only minimal manual intervention.

This comprehensive data preparation pipeline involves
sequential processes aimed at converting, tiling, enhancing,
and classifying point cloud data for various downstream ap-
plications including vectorization, vegetation encroachment
analysis, etc. The coordinate system of the data is WGS 84
/ UTM zone 35N (EPSG:32635).

3.3. Class Specifications

We identify the following list of semantic classes with each
corresponding label ID provided in parentheses:
Ground (2) : All points representing the Earth’s surface,
including, soil, pavement, roads, and the bottom of water
bodies.
Vegetation (3) : All points representing organic plant life,
ranging from trees, low shrubs, and tall grass of all heights.
Buildings (4) : Man-made structures characterized by roofs
and walls, encompassing houses, factories, and sheds.
Noise (5) : Sporadic points suspended in air or underground.
Transmission Wires (6) : High-voltage wires for long-
distance transmission from power plants to substations. Ei-
ther directly connected to transmission towers or poles.
Also includes transmission ground wires.
Distribution Wires (7) : Lower-voltage overhead distribu-
tion wires distributing electricity from substation to end
users. Includes span guy wires and communication wires.
Poles (8) : Utility poles used to support different types
of wires or electroliers. These can include poles with ei-
ther transmission or distribution wires. Down guy wires,
crossarms and transformers are also included in this class.
Transmission Towers (9) : Large structures supporting
transmission wires with the distinct characterisation of steel
lattices and cross beams.
Fence (10) : Barriers, railing, or other upright structure, typ-
ically of wood or wire, enclosing an area of ground.



Vehicle (11) : All wheeled vehicles that can be driven.
Unassigned (1) : This category serves as a catch-all for non-
subject points. Anything that is not on the class list is clas-
sified as Unassigned. These include wooden pallets, trash,
structures not large or strong enough to put under buildings
(tents, boulders, etc.), and house antennas.

3.4. Data Quality Control

The dataset classifications are derived from fully automated
processes which may contain errors. To discern accurate
classifications within the dataset, manual verification of
tiles was conducted by Sharper Shape’s internal data cu-
ration team of annotation experts in the power utility do-
main. The dataset is bifurcated into two primary categories:
“Ground Truth” and “Pseudo-Labels”. Within each tile,
if misclassifications for a particular object class (exclud-
ing Ground, Vegetation, Unassigned, and Noise) exceed 10
points, the tile is categorized as a pseudo-label. Conversely,
tiles devoid of misclassifications or with misclassifications
totaling fewer than 10 points for object classes are allocated
to the “Ground Truth” category. Overall, out of the 1246
tiles in the dataset, 624 are classified as ground truth, and
622 are categorized as pseudo labels.

3.5. Data Visualization

In order to facilitate quality control and to easily visualize
the data, a software platform named Sharper CORE was
used. This has been developed internally by Sharper Shape.
It enables the use of geographical information with point
clouds and images, allowing for sensor fusion. This enables
comprehensive data analysis to make sure the quality aligns
well with the expectation during quality control tasks.

Fig. 2 shows a screenshot from the CORE web soft-
ware, showcasing various views available within the inter-
face. The illustration highlights the integration of data from
different modalities into a unified view, offering extensive
contextual information during quality control tasks. In addi-
tion to visualizing point clouds and images, CORE also sup-
ports visualizing vector overlays which help with assessing
quality of object classes such as power lines, poles, towers,
etc. as illustrated in Fig. 3. This context is valuable since
we no longer have to navigate every portion of point cloud
data to evaluate our deep learning models and data.

CORE is built on top of specialized GIS databases which
store information about the vector models that can be used
to do further analysis and reporting. This allows for in-
depth component inventory and environmental analysis in
a structured and meaningful way so that data can be queried
to build specific datasets. An example of inventory is shown
in Fig. 4. In addition, CORE scales with large amounts of
data seamlessly and allows custom rendering settings and
cloud-based data serving. As a result, numerous individuals
with limited technical proficiency in point cloud data were

Figure 3. Point cloud inspection. 3D Point Cloud Naviga-
tion/Editing View provided by CORE.

Figure 4. Component inventory. Detection and inventory of spe-
cific components in CORE based on multimodal data inputs.

able to participate in the quality control process, collaborat-
ing simultaneously online with the aid of basic instructions.

4. Experimental Evaluation
We first present statistics of the proposed dataset in Sec. 4.1
and discuss evaluation metrics in Sec. 4.2. Next, we analyze
different design choices and perform ablation studies of the
Minkowski Engine-based baseline network with 4 different
architectures and various sets of point features. We also pro-
vide details of loss functions that can efficiently handle class
imbalance and investigate the influence of pseudo labels on
semantic segmentation performance in Sec. 4.3. Finally, we
provide quantitative and qualitative results of the baseline
model on the proposed dataset.

4.1. Statistics of ECLAIR

The proposed dataset comprises 1246 tiles, each covering
an area of 100 × 100 square meters. To ensure a robust
evaluation framework, the dataset is divided into train, vali-
dation, and test splits following the standard proportions of
70%, 10%, and 20% respectively. The validation and test
splits consist only of the ground truth tiles to ensure that the
metrics generated are reliable and consistent.



macro per-class F1 / IoU (%)
Features F1 IoU (%) Ground Vegetation Buildings Noise Trans. wires Dist. wires Dist. poles Trans. towers Fence Vehicles Unassigned

fint 0.841 76.72 0.99 / 98.23 0.99 / 98.32 0.92 / 85.87 0.81 / 68.09 0.99 / 98.86 0.90 / 83.19 0.73 / 57.50 0.94 / 90.10 0.85 / 73.88 0.86 / 76.35 0.23 / 13.58
freturn 0.842 76.63 0.99 / 98.30 0.99 / 98.40 0.93 / 86.82 0.83 / 71.04 0.99 / 98.87 0.90 / 82.26 0.69 / 52.27 0.96 / 91.62 0.83 / 70.72 0.86 / 75.34 0.29 / 17.24
fcolor 0.838 75.69 0.99 / 98.33 0.99 / 98.43 0.92 / 86.43 0.81 / 68.61 0.99 / 99.20 0.92 / 85.65 0.69 / 52.86 0.94 / 88.08 0.84 / 72.65 0.77 / 61.94 0.34 / 20.46
fint+fcolor 0.828 74.80 0.99 / 98.32 0.99 / 98.43 0.92 / 85.43 0.81 / 67.75 0.99 / 98.80 0.90 / 82.13 0.68 / 51.02 0.95 / 90.01 0.85 / 74.50 0.76 / 74.50 0.26 / 15.14
freturn+fcolor 0.829 74.64 0.99 / 98.18 0.99 / 98.29 0.92 / 84.38 0.81 / 68.61 0.99 / 98.68 0.89 / 79.80 0.70 / 53.23 0.93 / 87.63 0.81 / 68.66 0.81 / 68.03 0.27 / 15.52
fint+freturn 0.848 77.35 0.99 / 98.27 0.99 / 98.36 0.94 / 87.73 0.82 / 69.02 0.99 / 98.51 0.89 / 80.69 0.74 / 58.65 0.95 / 90.87 0.83 / 70.39 0.89 / 80.49 0.30 / 17.89
fint+freturn+fcolor 0.843 76.48 0.99 / 98.27 0.99 / 98.41 0.88 / 78.76 0.83 / 70.89 0.99 / 98.95 0.92 / 84.50 0.74 / 59.06 0.95 / 88.36 0.85 / 73.62 0.85 / 73.87 0.28 / 16.51

(a) Point features. We compare the three different point features: intensity fint; the return number and the number of returns freturn; the color fcolor and their
combinations (cf . Sec. 4.3) and report macro and per-class F1 and IoU metrics. We observe that the combination of intensity and return features achieves
the best segmentation results.

macro per-class F1 / IoU (%)
Loss function F1 IoU (%) Ground Vegetation Buildings Noise Trans. wires Dist. wires Dist. poles Trans. towers Fence Vehicles Unassigned

Minkowski+Lce 0.831 75.45 0.99 / 98.36 0.99 / 98.46 0.93 / 87.78 0.80 / 66.43 0.99 / 98.73 0.90 / 80.00 0.62 / 45.08 0.94 / 89.06 0.85 / 73.72 0.88 / 77.99 0.25 / 14.32
Minkowski+Liwce 0.726 63.70 0.99 / 97.94 0.98 / 98.05 0.84 / 72.48 0.30 / 17.78 0.99 / 98.85 0.92 / 85.84 0.50 / 32.89 0.91 / 82.61 0.60 / 43.30 0.75 / 60.27 0.19 / 10.72
Minkowski+Lfl 0.843 76.48 0.99 / 98.27 0.99 / 98.41 0.88 / 78.76 0.83 / 70.89 0.99 / 98.95 0.92 / 84.50 0.74 / 59.06 0.95 / 88.36 0.85 / 73.62 0.85 / 73.87 0.28 / 16.51

(b) Loss functions. We train the Minkowski Engine [10] with different loss functions to handle class imbalance of the ECLAIR dataset. The following
notation is used: Lfl - Focal loss; Lce - Cross-Entropy loss; Liwce - inverse weighted Cross-Entropy loss.

macro per-class F1 / IoU (%)
Training data F1 IoU (%) Ground Vegetation Buildings Noise Trans. wires Dist. wires Dist. poles Trans. towers Fence Vehicles Unassigned

GT 0.561 46.45 0.99 / 97.10 0.99 / 97.10 0.62 / 44.60 0.68 / 51.09 0.96 / 91.86 0.58 / 40.84 0.11 / 05.92 0.35 / 21.10 0.61 / 43.50 0.30 / 17.66 0.0 / 0.0
Pseudo Labels 0.842 76.35 0.99 / 98.27 0.99 / 98.36 0.95 / 91.02 0.80 / 66.55 0.99 / 98.27 0.87 / 76.88 0.69 / 52.71 0.94 / 88.99 0.85 / 73.52 0.87 / 76.62 0.31 / 18.59
GT+Pseudo Labels 0.843 76.48 0.99 / 98.27 0.99 / 98.41 0.88 / 78.76 0.83 / 70.89 0.99 / 98.95 0.92 / 84.50 0.74 / 59.06 0.95 / 88.36 0.85 / 73.62 0.85 / 73.87 0.28 / 16.51

(c) Training data. Comparing different annotation strategies (cf . Sec. 3.4), we observe that using only carefully curated tiles (GT) leads to poor semantic
segmentation results due to a lack of data for rare classes (cf . Sec. 4.1). The pseudo labels combined with ground-truth significantly improve segmentation
performance.

macro per-class F1 / IoU (%)
Training data F1 IoU (%) Ground Vegetation Buildings Noise Trans. wires Dist. wires Dist. poles Trans. towers Fence Vehicles Unassigned

Res16UNet34A 0.793 69.66 0.99 / 97.60 0.99 / 98.01 0.62 / 45.11 0.80 / 66.55 0.99 / 97.81 0.86 / 75.22 0.63 / 45.59 0.86 / 74.84 0.83 / 70.23 0.88 / 78.95 0.28 / 16.37
Res16UNet14 0.797 70.61 0.99 / 97.78 0.99 / 98.16 0.62 / 44.93 0.82 / 69.97 0.99 / 97.77 0.86 / 74.78 0.68 / 51.56 0.94 / 88.63 0.81 / 68.54 0.83 / 71.44 0.23 / 13.10
Res16UNet34C 0.843 76.48 0.99 / 98.27 0.99 / 98.41 0.88 / 78.76 0.83 / 70.89 0.99 / 98.95 0.92 / 84.50 0.74 / 59.06 0.95 / 88.36 0.85 / 73.62 0.85 / 73.87 0.28 / 16.51
Res16UNet14C 0.845 77.29 0.99 / 98.18 0.99 / 98.29 0.92 / 84.51 0.84 / 72.33 0.99 / 99.05 0.93 / 86.34 0.75 / 60.23 0.96 / 91.34 0.85 / 73.54 0.84 / 72.79 0.24 / 13.54

(d) Network architectures. We explore different architectures of the Minkowski Engine and find that the Res16UNet14C backbone leads to the best semantic
segmentation results in terms of macro F1 (IoU) and per-class metrics.

Table 2. Ablation studies. We provide ablation studies of the proposed dataset for different sets of point features in Tab. 2a, various loss
functions to handle the class imbalance (cf . Tab. 2b); different point-wise annotation strategies in Tab. 2c; 4 different network architectures
in Tab. 2d and report the F1 / IoU metrics. The best results for each category of experiments are marked in bold.

Fig. 5 provides statistics over all points of the proposed
dataset revealing a significant imbalance across the seman-
tic labels. Predominant categories such as Ground, Vege-
tation, and Buildings are overrepresented forming the ma-
jority of the dataset. In contrast, critical but less frequent
categories (e.g., Transmission Towers, Distribution Wires,
Poles, and Vehicles) account for less than 1% of the to-
tal number of points, underscoring a challenge in achieving
balanced representation. This imbalance reflects real-world
conditions, presenting an opportunity to test the robustness
and generalizability of point cloud classification models un-
der skewed distribution scenarios. In addition to the care-
fully curated tiles (GT in Fig. 5), we also release a sub-
set with pseudo labels generated by our proprietary point
cloud classification model (pseudo labels in Fig. 5).
Although having imperfect semantic labels, this dataset im-
proves the model’s generalization performance leading to
better segmentation results (cf . Sec. 4.3).

4.2. Metrics

The F1 score and Intersection over Union (IoU) are both
metrics used to evaluate the performance of semantic seg-

mentation models, including those applied to point clouds.
The F1 score is the harmonic mean of precision and recall.
Precision measures the correctness of the positive predic-
tions made by the model, while recall measures the model’s
ability to detect all actual positives. The F1 score is bene-
ficial when the balance between precision and recall is re-
quired, especially when there is an uneven class distribu-
tion. It ensures that a model is not simply predicting the
majority class. In contrast, IoU may be less informative in
scenarios in which class imbalance affects the model’s per-
formance as the score primarily focuses on the spatial accu-
racy of the segmentation and not on the model’s ability to
detect rare classes. Therefore, in scenarios when it is essen-
tial to both identify every instance of a given class (recall)
and ensure the accuracy of these detected instances (preci-
sion), particularly in context of significant class imbalance
(cf . Sec. 4.1), we employ the F1 score as a key metric for
evaluating the performance of semantic segmentation mod-
els. To be consistent with other works [20, 24, 37], we also
report the IoU.
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Figure 5. The distribution of semantic classes. We report the
total number of points for each semantic category showing a high
imbalance of the proposed dataset (note the logarithmic scale for
the horizontal axis).

4.3. Ablation Studies

In this section, we conduct several ablation studies to ex-
amine the impact of various factors on segmentation perfor-
mance. These factors include different architectural design
choices using the Minkowski Engine [10], the effect of di-
verse point features and objective functions, and the quality
of semantic ground-truth labels.
Point features. We consider the following features: a)
Intensity fint; b) Return data freturn: it includes the LiDAR
return number and the number of returns; c) Color fcolor; d)
a combination of Intensity and Return data fint + freturn; e)
a combination of Intensity and Color fint + fcolor; f) a com-
bination of Return data and Color freturn + fcolor; g) all the
features combined, i.e. fint + freturn + fcolor. The results pre-
sented in Tab. 2a show that combining intensity and return
data achieves the best performance. The color feature seems
quite powerful and can also improve semantic segmentation
results for important classes, such as Fence.
Loss functions. Fundamentally, urban areas typically ex-
hibit a highly skewed distribution of categories with a few
dominant classes such as vegetation and ground occupy-
ing the majority of points, while smaller, yet critical, cate-
gories such as wires constitute a tiny fraction of points. The
highly imbalanced distribution presents a major challenge
from the ECLAIR dataset for accurate semantic segmenta-
tion (cf . Sec. 4.1). To address this issue, adopting more
advanced loss functions is a common strategy [4, 22, 38].
We assess the efficacy of three off-the-shelf available loss
functions, using the Minkowski Engine [10] as a baseline
model. The evaluated objective functions include: cross-
entropy Lce, weighted cross-entropy based on inverse fre-
quency Liwce, and the focal loss Lfl [22]. The quantitative
comparison of the baseline model with different loss func-
tions is presented in Tab. 2b. We observe that using Focal
loss leads to the best results, indicating that it can efficiently
handle rare classes, e.g., Distribution Poles.

Figure 6. Confusion matrix. We report semantic segmentation
results for our best model using a confusion matrix. Here, the size
of circles corresponds to the total amount of points of each seman-
tic class. The per-class F1 score is reported inside each circle. We
find that the model performs well overall but falls short at seg-
menting rare, important classes, e.g., Poles. Please zoom in to see
the details.

Ground truth vs. pseudo labels. We ran experiments
with the two point cloud annotation strategies discussed in
Sec. 3.4 and Sec. 4.1. As shown in Tab. 2c, adding pseudo
labels obtained by our proprietary point cloud segmentation
approach leads to consistent improvements across all the
classes compared to the manually verified ground truth data.
Inaccurate labels introduce a form of noise into the training
process, which can help the model learn to generalize better
by forcing it to learn from a broader range of examples than
it might from a smaller, perfectly labeled dataset (cf . Fig. 5:
train (GT) vs. train (GT + pseudo labels)).
Network architecture. In order to evaluate the per-
formance with different model capacities, we consider the
Minkowski Engine [10] with different number of layers. We
list the architecture configurations and report corresponding
semantic segmentation performance in Tab. 2d. Our experi-
ments show that using the Res16UNet14C architecture im-
proves overall segmentation quality achieving the best per-
class performance.

4.4. 3D Semantic Understanding

Technical details. The model architecture utilized in this
study is ResUNet [12] implemented with the Minkowski
Engine [10]. Conventional convolution layers are re-
placed with spatial convolution layers to accommodate
point cloud data. Training of the model is conducted on
AWS g5.12xlarge instances, each equipped with 4 NVIDIA



Figure 7. Qualitative results of the best model. We assess segmentation performance of the strongest baseline model on the test split of
the proposed ECLAIR dataset. The top row demonstrates successful cases where the model performs well. In contrast, the bottom row
highlights failure scenarios where the model produces noisy, inaccurate predictions.

A10G GPUs with 24 GB of vRAM per GPU. Given the
memory-intensive nature of these networks, we maintain
a batch size of 2 per GPU, resulting in an effective batch
size of 8. Tiles are cropped to ensure a maximum size of
100m × 100m. Data augmentation techniques such as ran-
dom coordinate scaling, random jitter, and random flip are
applied, followed by normalization of coordinates before
quantization. For features, RGB and intensity are scaled
from 0 to 1 as floating-point values, and return number and
number of returns are one-hot encoded before being fed into
the network. The Adam optimizer [17] is employed with a
learning rate set to 0.001, augmented by a step scheduler to
adjust the learning rate every 10 steps. The voxel size is set
to 0.05 with a normalisation factor of 10.0 applied to the
coordinates before voxelisation.
Analysis. According to the ablation study per-
formed in Sec. 4.3 and reported in Tab. 2, we chose
the Res16Unet14C architecture as a backbone of the
Minkowski Engine network. The model was trained us-
ing both point features, i.e. fint+freturn with Focal Loss [22]
achieving macro F1 of 0.848 and macro IoU of 77.35%.
To further investigate segmentation performance of our
baseline model, we provide a confusion matrix illustrated
in Fig. 6. As can be seen, the model performs well success-
fully classifying the major categories, such as Ground, Veg-
etation, Transmission Wires, and Buildings, while classes
such as Fence and Poles have very poor generalization
scores. Similar to [24, 37], we believe that the imbal-
anced distribution of semantic classes significantly affects
the model’s ability to generalize, as it mainly aligns with
dominant classes while struggling to effectively capture the

distinct characteristics of less representative but important
classes. Qualitative results are illustrated in Fig. 7.

5. Conclusion
We present ECLAIR, a high-fidelity aerial LiDAR dataset
and demonstrate how it can be used as a challenging bench-
mark for 3D semantic segmentation. The high-quality
ground-truth labels along with pseudo labels allow bench-
marking of existing point cloud semantic segmentation ap-
proaches at scale. Additionally, long-tail annotations of
point clouds facilitate fine-grained semantic understanding
while accommodating the uncertainty of labels. We hope
that the ECLAIR dataset will introduce new challenges and
stimulate the development of innovative point cloud seman-
tic segmentation approaches that better generalize to real-
world scenarios. We also aim to expand ECLAIR’s capabil-
ities to include instance segmentation annotations as future
work. Furthermore, we would like to expand the ECLAIR
dataset to cover larger areas.
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